A Z3-graded generalization of supermatrices

نویسنده

  • Bertrand Le Roy
چکیده

We introduce Z3-graded objects which are the generalization of the more familiar Z2-graded objects that are used in supersymmetric theories and in many models of non-commutative geometry. First, we introduce the Z3graded Grassmann algebra, and we use this object to construct the Z3matrices, which are the generalizations of the supermatrices. Then, we generalize the concepts of supertrace and superdeterminant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypersymmetry: a Z3-graded generalization of Supersymmetry, J.Math.Phys

We propose a generalization of non-commutative geometry and gauge theories based on ternary Z3-graded structures. In the new algebraic structures we define, we leave all products of two entities free, imposing relations on ternary products only. These relations reflect the action of the Z3-group, which may be either trivial, i.e. abc = bca = cab, generalizing the usual commutativity, or non-tri...

متن کامل

On a Z3-Graded Generalization of the Witten Index

We construct a realization of the algebra of the Z3-graded topological symmetry of type (1, 1, 1) in terms of a pair of operators D1 : H1 → H2, D2 : H2 → H3 satisfying [D1D † 1,D † 2D2] = 0. We show that the sequence of the restriction of these operators to the zero-energy subspace forms a complex and establish the equality of the corresponding topological invariants with the analytic indices o...

متن کامل

Z3-graded analogues of Clifford algebras and generalization of supersymmetry

We define and study the ternary analogues of Clifford algebras. It is proved that the ternary Clifford algebra with N generators is isomorphic to the subalgebra of the elements of grade zero of the ternary Clifford algebra with N+1 generators. In the case N = 3 the ternary commutator of cubic matrices induced by the ternary commutator of the elements of grade zero is derived. We apply the terna...

متن کامل

Graded Prime Ideals Attached to a Group Graded Module

Let $G$ be a finitely generated abelian group and $M$ be a $G$-graded $A$-module. In general, $G$-associated prime ideals to $M$ may not exist. In this paper, we introduce the concept of $G$-attached prime ideals to $M$ as a generalization of $G$-associated prime ideals which gives a connection between certain $G$-prime ideals and $G$-graded modules over a (not necessarily $G$-graded Noetherian...

متن کامل

Results on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module

Let  be a local Cohen-Macaulay ring with infinite residue field,  an Cohen - Macaulay module and  an ideal of  Consider  and , respectively, the Rees Algebra and associated graded ring of , and denote by  the analytic spread of  Burch’s inequality says that  and equality holds if  is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of  as  In this paper we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996